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Some orthogonal very well poised8ϕ7-functions

Sergei K Suslov†
Kurchatov Institute, Moscow 123182, Russia

Received 4 February 1997

Abstract. Recently Ismail, Masson and Suslov established a continuous orthogonality relation
and some other properties of a2ϕ1-Bessel function on aq-quadratic grid. Askey suggested that
the ‘Bessel-type orthogonality’ found in the above paper at the2ϕ1-level really has a general
character and can be extended up to the8ϕ7-level. Very well poised8ϕ7-fuctions are known as
a nonterminating version of the classical Askey–Wilson polynomials. In this paper we prove
Askey’s conjecture and discuss some properties of the orthogonal8ϕ7-functions. Another type
of the orthogonality relation for a very well poised8ϕ7-function was recently found by Askey,
Rahman and Suslov.

1. Introduction

The Askey–Wilson polynomials [4] are

pn(x) = pn(x; a, b, c, d)
= a−n(ab, ac, ad; q)n 4ϕ3

(
q−n, abcdqn−1, aeiθ , ae−iθ

ab, ac, ad
; q, q

)
(1.1)

wherex = cosθ . These polynomials are known as the most general system of classical
orthogonal polynomials (see[1, 4–7, 15, 16]).

The symbol4ϕ3 in (1.1) is a special case of basic hypergeometric series [10],

rϕs(t) : = rϕs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, t
)

=
∞∑
n=0

(a1, a2, . . . , ar; q)n
(q, b1, b2, . . . , bs; q)n ((−1)nqn(n−1)/2)1+s−r tn.

(1.2)

The standard notations for theq-shifted factorials are

(a; q)n :=
n∏
k=1

(1− aqk−1) (1.3)

(a1, a2, . . . , ar; q)n :=
r∏
k=1

(ak; q)n (1.4)

and

(a; q)∞ := lim
n→∞(a; q)n (1.5)

(a1, a2, . . . , ar; q)∞ :=
r∏
k=1

(ak; q)∞ (1.6)
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provided |q| < 1. For an excellent account on the theory of basic hypergeometric series
see [10].

Askey and Wilson found the orthogonality relation∫ π

0

pn(cosθ; a, b, c, d)pm(cosθ; a, b, c, d)(e2iθ , e−2iθ ; q)∞
(aeiθ , ae−iθ , beiθ , be−iθ , ceiθ , ce−iθ , deiθ , de−iθ ; q)∞ dθ

= δnm (q, ab, ac, ad, bc, bd, cd; q)∞
2π(abcd; q)∞

× (1− abcdq
−1)(q, ab, ac, ad, bc, bd, cd; q)n

(1− abcdq2n−1)(abcdq−1; q)n . (1.7)

In the fundamental paper [4], they studied in details many other properties of these
polynomials.

Recently Ismailet al [12, 13] have considered the2ϕ1-function,

Jν(z, r) = J̃ν(x(z), r|q)
:=
( r

2

)ν (qν+1,−r2/4; q)∞
(q; q)∞ 2ϕ1

(
q(ν+1)/2eiθ , q(ν+1)/2e−iθ

qν+1 ; q,− r
2

4

)
(1.8)

as aq-analogue on aq-quadratic grid of the Bessel function [22],

Jν(x) =
(x

2

)ν ∞∑
n=0

(−x2/4)n

n!0(ν + n+ 1)
. (1.9)

They established the following orthogonality property for theq-Bessel function,∫ π

0
J̃ν(cosθ, r)J̃ν(cosθ, r ′)

(e2iθ , e−2iθ ; q)∞
(qαeiθ , qαe−iθ , q1−αeiθ , q1−αe−iθ ; q)∞

×(q(ν+1)/2eiθ , q(ν+1)/2e−iθ , q(ν+1)/2eiθ , q(ν+1)/2e−iθ ; q)−1
∞ dθ = 0 (1.10)

if r 6= r ′,∫ π

0
(J̃ν(cosθ, r))2

(e2iθ , e−2iθ ; q)∞
(qαeiθ , qαe−iθ , q1−αeiθ , q1−αe−iθ ; q)∞

×(q(ν+1)/2eiθ , q(ν+1)/2e−iθ , q(ν+1)/2eiθ , q(ν+1)/2e−iθ ; q)−1
∞ dθ

= −4π(1− q)q−(ν+1)/2

(q, q(ν+1)/2+α, q(ν+1)/2−α+1; q)2∞
∂J̃ν(x(α), r)

∂r2

∇J̃ν(x(α), r)
∇x(α) (1.11)

if r = r ′. Herer andr ′ are two roots of the equation

Jν(α, r) = Jν(α, r ′) = 0 (1.12)

andJν(z, r) = J̃ν(x(z), r), x(z) = 1
2(q

z + q−z), (x = cosθ , if qz = eiθ ), Reν > −1, and
0 < Reα < 1. (See [12, 13] for more details.) This is aq-version of the orthogonality
relation for the classical Bessel function∫ 1

0
xJν(rx)Jν(r

′x) dx =
{

0 if r 6= r ′
1
2(Jν+1(r))

2 if r = r ′ (1.13)

under the conditionsJν(r) = Jν(r ′) = 0 [22].
Askey [2] suggested that the orthogonality relation (1.10), (1.11) can be extended to the

level of very well poised8ϕ7-functions. Our main objective in this paper is to prove his
conjecture.

It is also worth mentioning that recently Bustoz and Suslov [9] established a similar
orthogonality property for basic trigonometric functions and introduced the corresponding
q-Fourier series.
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2. Difference equation and its8ϕ7-Solutions

Let us consider adifference equation of hypergeometric type

σ(z)
1

∇x1(z)

(∇u(z)
∇x(z)

)
+ τ(z)1u(z)

1x(z)
+ λu(z) = 0 (2.1)

on aq-quadratic latticex(z) = 1
2(q

z+q−z) with x1(z) = x(z+ 1
2) and1f (z) = ∇f (z+1) =

f (z + 1)− f (z). Here, in the most general case,

σ(z) = q−2z(qz − a)(qz − b)(qz − c)(qz − d) (2.2)

τ(z) = σ(−z)− σ(z)
∇x1(z)

= 2q1/2

1− q (abc + abd + acd + bcd − a − b − c − d + 2(1− abcd)x) (2.3)

λ = λν = 4q3/2

(1− q)2 (1− q
−ν)(1− abcdqν−1). (2.4)

Equation (2.1) can also be rewritten in self-adjoint form,

1

∇x1(z)

(
σ(z)ρ(z)

∇u(z)
∇x(z)

)
+ λρ(z)u(z) = 0 (2.5)

whereρ(z) is a solution of thePearson equation,

1(σ(z)ρ(z)) = τ(z)ρ(z)∇x1(z). (2.6)

See [16, 20] for details.
As is well known, there are different kinds of solutions of equation (2.1). For integer

values of the parameterν = n = 0, 1, 2, . . . , the famous solutions of (2.1) are the Askey–
Wilson 4ϕ3-polynomials (1.1) ([4, 10, 7]). For arbitrary values of this parameter, solutions
of (2.1) can be written in terms of8ϕ7-functions [6, 14, 20]. Let us choose the following
solution,

uν(z) = uν(z; a, b, c, d) = (qa/b, q1−ν+z/b, q1−ν−z/b; q)∞
(q1−νa/b, q1+z/b, q1−z/b; q)∞

× 8ϕ7

(
aq−ν
b
, q

√
aq−ν
b
,−q

√
aq−ν
b
, q−ν, q

1−ν
bc
,
q1−ν
bd
, aqz, aq−z√

aq−ν
b
,−
√
aq−ν
b
,
aq

b
, ac, ad,

q1−ν+z
b
,
q1−ν−z
b

; q, cdqν
)

(2.7)

= (q1−ν/ab; q)∞
(q/ab; q)∞ 4ϕ3

(
q−ν, abcdqν−1, aqz, aq−z

ab, ac, ad
; q, q

)
+ (q

−ν, abcdqν−1, qc/b, qd/b; q)∞
(ac, ad, cdqν, ab/q; q)∞

(aqz, aq−z; q)∞
(q1+z/b, q1−z/b; q)∞

× 4ϕ3

(
q1−ν/ab, cdqν, q1+z/b, q1−z/b

qc/b, qd/b, q2/ab
; q, q

)
. (2.8)

We have used (III.36) of [10] to transform (2.7) into (2.8). Both4ϕ3-functions in (2.8)
are balanced and converge when|q| < 1, the8ϕ7-function in (2.7) has a very well poised
structure [10]. A similar8ϕ7-function was recently discussed by Rahman [17].

One can easily see, that for integersν = n = 0, 1, 2, . . . the 8ϕ7-solution above is
just a multiple of the Askey–Wilson polynomial (1.1). Otherwise, the essential poles of
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this 8ϕ7-solution coincide with the simple poles of(q1+z/b, q1−z/b; q)−1
∞ . Therefore, the

function

vν(z) = vν(z; a, b, c, d) := (q1+z/b, q1−z/b; q)∞uν(z; a, b, c, d) (2.9)

whereuν(z; a, b, c, d) is defined by (2.7), (2.8), is an entire function in the complexz-plane.

3. Solution of Pearson equation

In order to rewrite equation (2.1) for the function (2.7), (2.8) in the self-adjoint form (2.5),
we have to find asolution of the Pearson-type equation(2.6). In the case of theq-quaratic
grid x = 1

2(q
z + q−z) this equation can be rewritten in the form

ρ(z + 1)

ρ(z)
= σ(−z)
σ (z + 1)

= q−4z−2q2z+1 (1− aqz)(1− q−z/b)(1− cqz)(1− dqz)
(1− aq−z−1)(1− qz+1/b)(1− cq−z−1)(1− dq−z−1)

. (3.1)

It is easy to check that

ρ0(z + 1)

ρ0(z)
= q−4z−2 for ρ0(z) = (q2z, q−2z; q)∞

qz − q−z (3.2)

ρα(z + 1)

ρα(z)
= q−2z−1 for ρα(z) = (αqz, αq−z, q1+z/α, q1−z/α; q)∞ (3.3)

ρa(z + 1)

ρa(z)
= 1− aq−z−1

1− aqz for ρa(z) = (aqz, aq−z; q)∞. (3.4)

(See, for example, [16, 18, 19] for methods of solving the Pearson equation.) Therefore,
one can choose the following solution of (3.1),

ρ(z) = (qz − q−z)−1(q2z, q−2z, q1+z/b, q1−z/b; q)∞
(αqz, αq−z, q1+z/α, q1−z/α, aqz, aq−z, cqz, cq−z, dqz, dq−z; q)∞ (3.5)

whereα is an arbitrary additional parameter. In the next section we shall see that this
solution satisfies the correct boundary conditions for the second-order divided-difference
Askey–Wilson operator (2.5) for certain values of this parameterα.

Special casesα = b or α = q/b of (3.5) give us the weight function for the Askey–
Wilson polynomials (cf [4, 7]).

4. Orthogonality Property

We can now establish the orthogonality relation of the8ϕ7-functions (2.7) with respect to the
weight function (3.5). Let us apply the followingq-version of the Sturm–Liouville procedure
(cf [7, 8, 16]). Consider the difference equations for the functionsuν(z) = uν(z; a, b, c, d)
anduµ(z) = uµ(z; a, b, c, d) in self-adjoint form,

1

∇x1(z)

(
σ(z)ρ(z)

∇uµ(z)
∇x(z)

)
+ λµρ(z)uµ(z) = 0 (4.1)

1

∇x1(z)

(
σ(z)ρ(z)

∇uν(z)
∇x(z)

)
+ λνρ(z)uν(z) = 0 (4.2)



Some orthogonal8ϕ7-functions 5881

where eigenvaluesλ = λν and λ′ = λµ are defined by (2.4). Let us multiply the first
equation byuν(z), the second one byuµ(z), and subtract the second equality from the first
one. As a result we obtain

(λµ − λν)uµ(z)uν(z)ρ(z)∇x1(z) = 1[σ(z)ρ(z)W(uµ(z), uν(z))] (4.3)

where

W(uµ(z), uν(z))=
∣∣∣∣ uµ(z) uν(z)
∇uµ(z)
∇x(z)

∇uν(z)
∇x(z)

∣∣∣∣
= uµ(z)∇uν(z)∇x(z) − uν(z)

∇uµ(z)
∇x(z)

= uν(z)uµ(z − 1)− uµ(z)uν(z − 1)

x(z)− x(z − 1)
(4.4)

is the analogue of the Wronskian [16].
We need to know the pole structure of the analogue of the WronskianW(uµ, uν) in

(4.4). Let us transform theu’s to the entire functionsv’s by (2.9),

uε(z) = ϕ(z)vε(z) (4.5)

whereε = µ, ν and

ϕ(z) = (q1+z/b, q1−z/b; q)−1
∞ . (4.6)

Thus,

W(uµ(z), uν(z)) = ϕ(z)ϕ(z − 1)W(vµ(z), vν(z)) (4.7)

where the new ‘Wronskian’,W(vµ(z), vν(z)), is clearly an entire function inz.
Integrating (4.3) over the contourC indicated in figure 1; where the variablez is such

that z = iθ/log−1 q and−π 6 θ 6 π ; gives

(λν − λµ)
∫
C

uν(z)uµ(z)ρ(z)∇x1(z) dz =
∫
C

1[σ(z)ρ(z)ϕ(z)ϕ(z − 1)W(vν(z), vµ(z))] dz.

(4.8)

All poles of the integrand on the right-hand side of (4.8) coincide with the simple poles of
the function

σ(z)ρ(z)ϕ(z)ϕ(z − 1) = − b(q2z, q1−2z; q)∞
(αqz, αq−z, q1+z/α, q1−z/α)∞

×(aqz, aq1−z, q1+z/b, q2−z/b, cqz, cq1−z, dqz, dq1−z; q)−1
∞ . (4.9)

The integrand on the right-hand side of (4.8) has the natural purely imaginary period
T = 2π i/log−1 q when 0< q < 1, so this integral is equal to∫

D

[σ(z)ϕ(z)ϕ(z − 1)ρ(z)W(vν(z), vµ(z))] dz (4.10)

whereD is the boundary of the rectangle in the figure oriented anticlockwise. The analogue
of the Wronskian here is an entire function. Thus, the essential poles of the integrand in
(4.10) coincide with the poles of function (4.9) and are just the simple poles atz = α0 and
z = 1− α0, whereqα0 = α. Evaluation of the residues at these simple poles gives∫
C

uν(z)uµ(z)ρ(z)∇x1(z) dz = b(q/αb, α/b; q)∞
(q, q, αa, qa/α, αc, qc/α, αd, qd/α; q)∞

×−4π i

logq

W(uν(α0), uµ(α0))

λν − λµ (4.11)
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Figure 1.

if ν 6= µ and 0< Reα0 <
1
2.

When α = b or α = q/b and the parametersν, µ = 0, 1, 2, . . . are nonnegative
integers, equations (2.8) and (4.11) imply the orthogonality relation for the Askey–Wilson
polynomials (1.7).

If both parametersµ andν are not nonnegative integers, we can rewrite (4.11) as∫ π

0
ṽν(cosθ )̃vµ(cosθ)

(e2iθ , e−2iθ ; q)∞
(αeiθ , αe−iθ , qeiθ /α, qe−iθ /α)∞

×(aeiθ , ae−iθ , qeiθ /b, qe−iθ /b, ceiθ , ce−iθ , deiθ , de−iθ ; q)−1
∞ dθ

= (q, q, αa, qa/α, qα/b, q2/αb, αc, qc/α, αd, qd/α; q)−1
∞

×−4πq1/2b

1− q
W(̃vν(

1
2(α + α−1)), ṽµ(

1
2(α + α−1)))

λν − λµ . (4.12)

Here we use the notatioñvε(x(z)) = vε(z), ε = µ, ν and x(z) = 1
2(q

z + q−z) = cosθ if
qz = eiθ ; we also assume that max(|a|, |q/b|, |c|, |d|) < 1.

Choosing the parametersµ andν asε-solutions of the equation

ṽε(
1
2(α + α−1); a, b, c, d) = 0 (4.13)

we finally arrive at theorthogonality relationof the 8ϕ7-functions,∫ π

0
ṽν(cosθ )̃vµ(cosθ)

(e2iθ , e−2iθ ; q)∞
(αeiθ , αe−iθ , qeiθ /α, qe−iθ /α)∞

×(aeiθ , ae−iθ , qeiθ /b, qe−iθ /b, ceiθ , ce−iθ , deiθ , de−iθ ; q)−1
∞ dθ = 0 (4.14)
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if µ 6= ν, and∫ π

0
(̃vν(cosθ))2

(e2iθ , e−2iθ ; q)∞
(αeiθ , αe−iθ , qeiθ /α, qe−iθ /α)∞
×(aeiθ , ae−iθ , qeiθ /b, qe−iθ /b, ceiθ , ce−iθ , deiθ , de−iθ ; q)−1

∞ dθ
= (q, q, αa, qa/α, qα/b, q2/αb, αc, qc/α, αd, qd/α; q)−1

∞

×−4πq1/2b

1− q
(
∂ṽν

∂λν

∇ṽν
∇x

)∣∣∣∣
qz=α

(4.15)

if µ = ν. We shall assume throughout this paper thatq1/2 < α < 1, 0 < a < 1,
0< q/b < 1, 0< c < 1, and 0< d < 1.

5. Some properties of zeros

In section 4 we established the orthogonality relation of the8ϕ7-functions (2.7)–(2.9) under
the boundary condition (4.13). Here we would like to discuss some properties ofν-zeros
of the function

ṽν(
1
2(α + α−1); a, b, c, d) = (qa/b, αq1−ν/b, q1−ν/αb; q)∞

(q1−νa/b; q)∞

× 8ϕ7

(
aq−ν
b
, q

√
aq−ν
b
,−q

√
aq−ν
b
, q−ν, q

1−ν
bc
,
q1−ν
bd
, αa, a/α√

aq−ν
b
,−
√
aq−ν
b
,
aq

b
, ac, ad,

q1−να
b
,
q1−ν
αb

; q, cdqν
)

(5.1)

= (cd, qα/b, qνacd/α, q1−ν/αb; q)∞
(acd/α, cdqν; q)∞

× 8ϕ7

(
acd
qα
,
√

acd
q1/2α

,−
√

acd
q1/2α

, q−ν, abcdqν−1, a
α
, c
α
, d
α√

acd
qα
,−
√
acd
qα
,
qνacd

α
,
q1−ν
αb
, ac, ad, cd

; q, q α
b

)
. (5.2)

We have used (III.23) of [10] to transform (5.1) into (5.2).
The main properties of zeros of the function (5.1), (5.2) can be investigated by using the

same methods as in [9, 12, 13]. The first property is that the functionṽν(x) in (5.1), (5.2)
has an infinity of realν-zeros. In order to see that, one can consider the largeν-asymptotics
of the 8ϕ7-function in (5.2),

8ϕ7

(
acd
qα
,
√

acd
q1/2α

,−
√

acd
q1/2α

, q−ν, abcdqν−1, a
α
, c
α
, d
α√

acd
qα
,−
√
acd
qα
,
qνacd

α
,
q1−ν
αb
, ac, ad, cd

; q, q α
b

)

−→
ν→∞ 6ϕ5

(
acd
qα
,
√

acd
q1/2α

,−
√

acd
q1/2α

, a
α
, c
α
, d
α√

acd
qα
,−
√
acd
qα
, ac, ad, cd

; q, α2

)

= (αa, αc, αd, acd/α; q)∞
(ac, ad, cd, α2; q)∞ (5.3)

by (II.20) of [10]. Therefore, asν →∞,

ṽν

(
1

2
(α + α−1); a, b, c, d

)
= (αa, qα/b, αc, αd; q)∞

(ac, ad, α2; q)∞ (q1−ν/αb; q)∞[1+ o(1)]. (5.4)

But for the positive values ofq andαb the function

(q1−ν/αb; q)∞
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oscillates and has an infinity of real zeros asν approaches infinity (see [12] for
details).

In a similar fashion, one can consider some other properties of zeros of the8ϕ7-function
(5.1), (5.2) close to those established in [9, 12, 13] at the level of the basic trigonometric
functions and theq-Bessel function, respectively. We will elaborate further on the properties
of ν-solutions of (4.13) in our next paper [21].
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